A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in Madin-Darby canine kidney cells and hippocampal neurons.

نویسندگان

  • Chialin Cheng
  • Greta Glover
  • Gary Banker
  • Susan G Amara
چکیده

The glutamate transporter excitatory amino acid transporter 3 (EAAT3) is polarized to the apical surface in epithelial cells and localized to the dendritic compartment in hippocampal neurons, where it is clustered adjacent to postsynaptic sites. In this study, we analyzed the sequences in EAAT3 that are responsible for its polarized localization in Madin-Darby canine kidney (MDCK) cells and neurons. Confocal microscopy and cell surface biotinylation assays demonstrated that deletion of the EAAT3 C terminus or replacement of the C terminus of EAAT3 with the analogous region in EAAT1 eliminated apical localization in MDCK cells. The C terminus of EAAT3 was sufficient to redirect the basolateral-preferring EAAT1 and the nonpolarized EAAT2 to the apical surface. Using alanine substitution mutants, we identified a short peptide motif in the cytoplasmic C-terminal region of EAAT3 that directs its apical localization in MDCK cells. Mutation of this sequence also impairs dendritic targeting of EAAT3 in hippocampal neurons but does not interfere with the clustering of EAAT3 on dendritic spines and filopodia. These data provide the first evidence that an identical cytoplasmic motif can direct apical targeting in epithelia and somatodendritic targeting in neurons. Moreover, our results demonstrate that the two fundamental features of the localization of EAAT3 in neurons, its restriction to the somatodendritic domain and its clustering near postsynaptic sites, are mediated by distinct molecular mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The COOH-terminal tail of the GAT-2 GABA transporter contains a novel motif that plays a role in basolateral targeting.

The ability of polarized epithelia to perform vectorial transport depends on the asymmetrical distribution of transmembrane proteins among their plasma membrane domains. The establishment and maintenance of these polar distributions relies on molecular signals embedded in the proteins themselves and the interpretation of these signals by cellular sorting machinery. Using Madin-Darby canine kidn...

متن کامل

Numb directs the subcellular localization of EAAT3 through binding the YxNxxF motif.

Excitatory amino acid transporter type 3 (EAAT3, also known as SLC1A1) is a high-affinity, Na(+)-dependent glutamate carrier that localizes primarily within the cell and at the apical plasma membrane. Although previous studies have reported proteins and sequence regions involved in EAAT3 trafficking, the detailed molecular mechanism by which EAAT3 is distributed to the correct location still re...

متن کامل

Identification of sorting determinants in the C-terminal cytoplasmic tails of the gamma-aminobutyric acid transporters GAT-2 and GAT-3.

In order to perform their physiologic functions, polarized epithelial cells must target ion transport proteins to the appropriate domains of their plasma membranes. Molecular signals responsible for polarized sorting have been identified for several membrane proteins which span the bilayer once. Most ion transport proteins are polytopic, however, and little is known of the signals responsible f...

متن کامل

Motifs that mediate dendritic targeting in hippocampal neurons: a comparison with basolateral targeting signals.

One model for dendritic protein sorting in neurons is based on parallels with basolateral targeting in Madin-Darby Canine Kidney (MDCK) epithelial cells. The goal of this study was to further evaluate this model by analyzing the neuronal targeting of several proteins that contain well-defined basolateral sorting motifs. When we expressed FcRgammaII-B2 and CD44, two basolateral markers whose sor...

متن کامل

Hetero-oligomerization of neuronal glutamate transporters.

Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 24  شماره 

صفحات  -

تاریخ انتشار 2002